

Extreme Science and Engineering Discovery Environment

Programmable Cyberinfrastructur e

Introduction to building Clusters in the Cloud

PEARC 18

7/22/2018

Eric Coulter

Speakers

- Eric Coulter
 - Indiana University, XCRI Engineer
- Jeremy Fischer
 - Indiana University, Senior Technical Adviser, Jetstream
- Suresh Marru
 - Indiana University, Deputy Director, Science Gateways Research Center

What is XCRI? (XSEDE Cyberinfrastructure Resource Integration)

- Very similar to Campus Bridging!
- XCRI provides software toolkits to ease use of local resources, and facilitate easy transitions between local and XSEDE resources
- We also do site visits and remote consultation!
- Continually looking for feedback from XSEDE users, Campus Champions, and service providers to keep our offerings up-to-date with current needs

XCRI Toolkits

- XCBC
 - Build a cluster based on OpenHPC
- XNIT
 - Get open-source scientific software
- Globus Connect Server configuration management
 - Easily set up a local globus connect server using Ansible
- Jetstream Virtual Clusters
 - Build a cluster in Jetstream, with Openstack and Ansible
- Cluster Monitoring toolkit
 - Easily set up Ganglia and XDMoD for cluster load and useage statistics

Jetstream Virtual Clusters

- Inspired by a need for more resources on Science Gateways
- Science Gateways allow users to submit jobs through a web interface, to a variety of resources – local, XSEDE, or cloud.
- The Airavata middleware developed by the SGRC (Science Gateways Research Center at Indiana University) makes these easy to use
- This model of virtual cluster was specifically developed for the SEAGrid project, available and easily configurable for anyone else.

What we're going to build:

Pieces of the whole:

- OpenHPC Project
 - Slurm for managing compute resources and scheduling
 - Spack for building software
 - Lmod for module environment
- Ansible for compute node configuration
- Openstack client for elasticity

Let's get started!

https://goo.gl/FmoHZ5

You've already got a headnode:

Now, create the compute nodes:

Now, configure the scheduler (etc.)!

Where can I get help?

- Wiki / Documentation: http://wiki.jetstream-cloud.org
- User guides: https://portal.xsede.org/user-guides
- XSEDE KB: https://portal.xsede.org/knowledge-base
- Email: help@xsede.org
- Campus Champions: https://www.xsede.org/campus-champions
- Training Videos / Virtual Workshops (TBD)

Spack configuration for OpenHPC:

- Spack installs in
 - /opt/ohpc/admin/spack/0.11.2/
 - Configuration files in:
 - /opt/ohpc/admin/spack/0.11.2/etc/defaults/
 - /root/.spack/linux/
 - Should be run as privileged user
 - Need to make sure software will install in a public directory:
 - Edit install_tree and tcl modules path in /opt/ohpc/admin/spack/0.11.2/etc/defaults/config.yaml
 - Provide OpenHPC compiler Module names in /root/.spack/linux/compilers.yaml

