

RESEARCH TECHNOLOGIES UNIVERSITY INFORMATION TECHNOLOGY SERVICES

Jetstream2: Accelerating cloud computing via Jetstream

Jeremy Fischer – Indiana University

Manager, Jetstream Cloud

Cyberinfrastructure for Major Facilities Workshop - Mar 2, 2022

What is "the" Jetstream?

- Fast moving air currents
- Hot/Cold air boundaries
- An NSF-funded cloud environment
- A project that brought new resources to US researchers via the national cyberinfrastructure, continuing into Jetstream2

Jetstream1

What worked?

- Allowing API access and full control (root privileges)
- "Indefinite workflows" allowing instances to run continuously – providing PIs renew their allocations
- Development of trial allocations

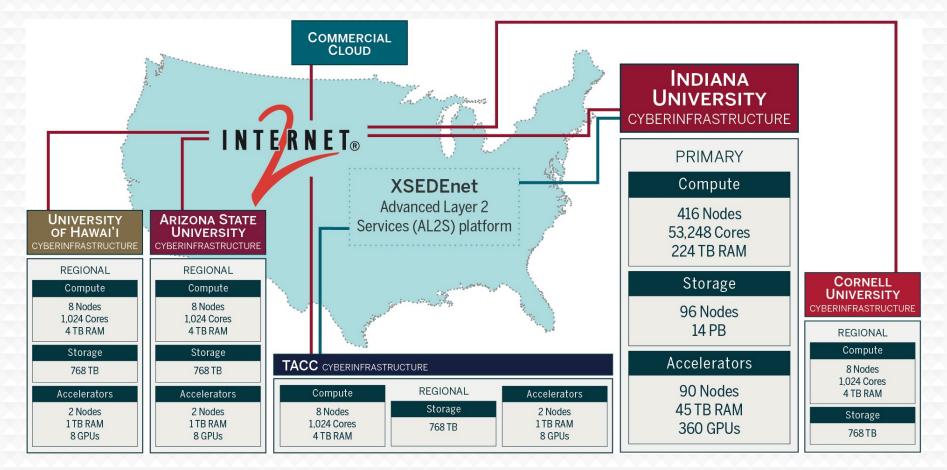
Flickr user MattHurst – Broken Blackberry

What didn't work?

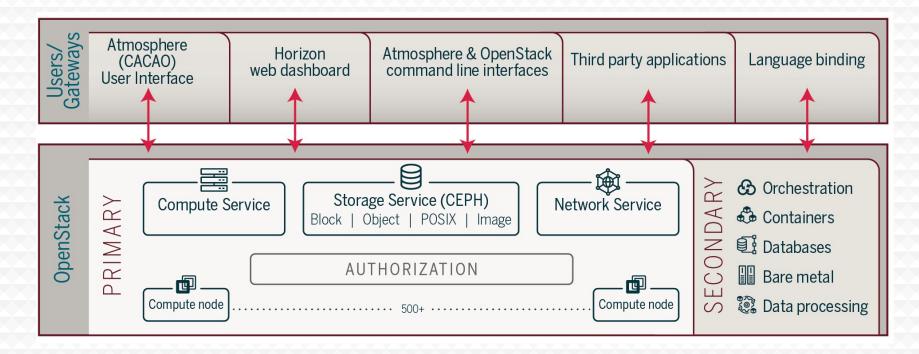
- Forcing small allocations into the research allocation process
- Lack of multi-year allocations
- Lack of shared data set storage

Lessons learned

Challenges -> Inspired changes


- Storage capacity -> Larger HDD pool and new flash storage
- Homogeneous hardware -> Inclusion of NVIDIA GPUs (w/MIG or vGPU) and memory diversity
- Separate OpenStack domains -> Unification of "Atmosphere" domain

D.Y. Hancock – Castello di Nipozzano 2017


- Virtual networking architecture/maintenance -> Increase offload capabilities via Cumulus Networks software and Mellanox hardware (NAT & simulation)
- Acceptance & integration into national CI ecosystem -> Changes to our metrics/KPIs & accounting processes
- Deployment diversity -> Leverage single technology for config management

Jetstream2 Architecture

Big Memory, Larger Instances, GPUs

- 128 core nodes AMD EPYC Milan
- Smallest node has 512GB of memory
- 32 Larger 1TB memory nodes*
- A100 GPUs sliced and diced

Jetstream2 Capabilities

Enhancing laaS model of Jetstream:

- Improved orchestration support
- Elastic virtual clusters
- Federated JupyterHubs
- Ease storage sharing (CephFS w/Manilla)
- Commitment to >99% uptime
- Critical for science gateway hosting
- Hybrid-cloud support Revamped User Interface
- Unified instance management
- Multi-instance launch

Feb 12, 2019 – Jet stream region called "Jet N6" NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill

- >57K cores of next-gen AMD EPYC processors
- >360 NVIDIA A100 GPUs will provide vGPUs via NVIDIA's MIG/vGPU feature
- >17PB of storage (NVMe and disk hybrid)
- 100GbE Mellanox network

Startup Defaults

- Primary cloud (IU) only
 - Jetstream (CPU Only) 200,000 SU (core hours)
 - Jetstream LM (1TB Large Memory nodes) 400,000 SU
 - Jetstream GPU (NVIDIA A100 GPU nodes) 600,000 SU
 - Jetstream Storage (requires one of the compute resources) 1TB
- Reference: https://docs.jetstream-cloud.org/general/resources/
- Research allocations have no set limits potentially millions of core hours at the cost of a quality proposal submission

VM flavors

Jetstream#

Table 1. VM CPU Instance Configurations								
Instance Type		RAM (500GiB available)	Ephemeral Storage (in GB)	Instances/Node				
m3.tiny	1	3	20	128				
m3.small	2	6	20	64				
m3.quad	4	15	20	32				
m3.medium	8	30	60	16				
m3.large	16	60	60	8				
m3.xl	32	125	60	4				
m3.2xl	64	250	60	2				
m3.3xl	128	500	60	1				

Table 2. VM GPU Instance Configurations

Instance Type			RAM (500GiB available)	Ephemeral Storage (in GB)	Instances/Node
g3.small	4	1 / 5gb	15	60	28**
g3.medium	8	2 / 10gb	30	60	16
g3.large	16	3 / 20gb	60	60	8
g3.xl	32	7 / 40gb	125	60	4

*7 GPU slices = 1 NVIDIA 40GB Ampere A100 GPU

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/#a100-profiles - 7 slices max **

Table 3. Large Memory Instance Configurations

			Ephemeral Storage (in GB)	Instances/Node
r3.large	64	500GB	60	2
r3.xl	128	1000GB	60	1

Timeline

- Jetstream now in 5th year of operations
- Jetstream extension granted by the NSF through November 2021
- Extension through end of March 2022 in process
- Jetstream2
 - Early operations in progress as of February 2022
 - Production operations by end of March 2022

Flickr user Oiluj Samall Zeid - Lejos de Yulín

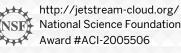
RESEARCH TECHNOLOGIES UNIVERSITY INFORMATION TECHNOLOGY SERVICES

NSF Awards 1053575 & 1548562 (XSEDE), 1445604 (Jetstream) and 2005506 (Jetstream2)

This document was developed with support from the National Science Foundation. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF.

Special thanks to contributors & Jetstream2 partners

• PI David Y. Hancock, J. Michael Lowe, Therese Miller, Maria Morris, Winona Snapp-Childs, and George Turner



Πī

RESEARCH TECHNOLOGIES UNIVERSITY INFORMATION TECHNOLOGY SERVICES Jetstream2 partners

J PERVASIVE TECHNOLOGY INSTITUTE

ψ

RESEARCH TECHNOLOGIES UNIVERSITY INFORMATION TECHNOLOGY SERVICES